jueves, 5 de mayo de 2011

3.7 transformada de funciones multiplicadas por t elevada a la n y divididas entre t

En particular, se verá como hallar la transformada de una función f(t) que se multiplica por un monomio tn, la transformada de un tipo especial de integral y la transformada de una función periódica. Las dos últimas propiedades de transformada permiten resolver ecuaciones que no se han encontrado hasta este momento: ecuaciones integrales de Volterra, ecuaciones integrodiferenciales y ecuaciones diferenciales ordinarias en las que la función de entrada es una función periódica definida por partes.
Multiplicación de una función por tn. La transformada de Laplace del producto de una función f(t) con t se puede encontrar mediante diferenciación de la transformada de Laplace de f(t). Para motivar este resultado, se supone que existe y que es posible intercambiar el orden de diferenciación e integración. Entonces:

es decir



Se puede usar el resultado anterior para hallar la transformada de Laplace de t2f(t):de la siguiente manera:


Los dos casos precedentes indican el resultado general para

No hay comentarios:

Publicar un comentario